MP2I - 2025/2026 Informatique - TD n°8 - Récursivité terminale 1/2

TD n°8 - Récursivité terminale

Exercice 1
Ecrire une fonction récursive terminale length qui calcule la longueur d’une liste.

Ecrire une fonction récursive terminale sum qui calcule la somme des éléments d’une liste.

Exercice 2

Transformer les fonctions suivantes en des fonctions récursives terminales :

let rec f1 n
if n=0 then

; let rec f3 1 = match 1 with
else 1+nx3+ (fl (n-1));;

[[1 -> [1
[t::ig -> t::t::(f3 q);;

let rec f2 1 el = match 1 with
|[1 ->0
|t::q when t=el -> 1+(f2 q el)
|[t::q -> f2 q el;;

let rec f4 n x = match n with
[0 -> 1
|= -> xx(f4 (n-1) x);;

Exercice 3
On donne la fonction suivante qui est de type int -> (’a->'a) -> ’'a -> 'a et qui prend en entrée un nombre entier
n, une fonction f et un élément x de 'espace de départ de f.

let rec itere n f x = match n with
| 6 -> x
| - -> f (itere (n - 1) f x);;

1. Que fait cette fonction?
2. Ecrire une version récursive terminale de cette fonction.

Exercice 4

1. Compléter la fonction concat suivante qui concaténe deux listes (c’est-a-dire qui impélmente @). Cette version
n’est pas récursive terminale.

let rec concat 11 12 = match 11 with

(1] -> ...
|t::q -> ... :: (concat ... ...);;

2. Compléter la fonction rev_concat suivante telle que rev_concat 11 12 renvoie le renversement de 11 concaténé
avec 12. Cette fonction est-elle récursive terminale ?

let rec rev_concat 11 12 = match 11 with

(11 -> ...
|t::q -> rev_concat ... (...::...);;

3. En déduire une fonction récursive terminale rev : 'a list -> ’a list qui renverse une liste. Par exemple
elle transforme [1;2;3;4] en [4;3;2;1]

4. Utiliser les deux fonctions précédentes pour écrire une fonction concat2 : ’'a list -> ’a list -> ’a list qui
concaténe deux listes et qui soit récursive terminale.

Exercice 5

Dans cet exercice nous allons étudier deux fonctions qui sont prédéfinies en Ocaml :

m List.map : ('a -> 'b) -> 'a list -> 'b list qui a une fonction f : A — B et une liste [a¢; a1;...;an-1],
associe la liste [f(ao);f(a1);...; f(an-1)],

m List.fold_left : (’‘a -> 'b -> 'a) -> ’'a -> 'b list -> ’'aquiaune fonctionf : AXB — A, un élément
a € A et une liste [bg; b1;...;b,-1] d’éléments de B associe 'élément f(...f (f (f(a, bo), b1), b2)..., b,—1) de
A.

m List.fold_right : ('a -> 'b -> ’'b) -> ’a list -> 'b -> ’b qui, & une fonction f : A X B — B, une liste
[ag; a1;...an—1] d’éléments de A et un élément b € B, associe I'élément f(ao, f (a1, f(ag, ..., f(an-1,b)))
de B.

1. Redéfinir la fonction List.length a ’'aide de List.fold_left puis & I'aide de List.fold_left. Comment calculer
la somme des éléments d’une liste en utilisant ces deux fonctions ? Et pour le produit?

2. Implémenter ces deux fonctions (si possible de maniére récursive terminale).



MP2I - 2025/2026 Informatique - TD n°8 - Récursivité terminale

2/2

3. Déterminer le type et ce que réalisent les fonction suivantes :

let mystl elt lst = List.fold_right (fun a b -> a :: b) lst [elt];;
let myst2 = List.fold_right (fun a b -> a :: b);;
let myst3 1st = List.fold_left min (List.hd lst) (List.tl 1lst);;

4. Réaliser la fonction List.map & 'aide de List.fold_right.



