
MP2I - 2025/2026 Informatique - TD n°8 - Récursivité terminale 1/2

TD n°8 - Récursivité terminale
Exercice 1
Écrire une fonction récursive terminale length qui calcule la longueur d’une liste.
Écrire une fonction récursive terminale sum qui calcule la somme des éléments d’une liste.

Exercice 2
Transformer les fonctions suivantes en des fonctions récursives terminales :

let rec f1 n =
if n=0 then 1
else 1+n*3+ (f1 (n-1));;

let rec f2 l el = match l with
|[] -> 0
|t::q when t=el -> 1+(f2 q el)
|t::q -> f2 q el;;

let rec f3 l = match l with
|[] -> []
|t::q -> t::t::(f3 q);;

let rec f4 n x = match n with
|0 -> 1
|_ -> x*(f4 (n-1) x);;

Exercice 3
On donne la fonction suivante qui est de type int -> (’a->’a) -> ’a -> ’a et qui prend en entrée un nombre entier
𝑛, une fonction 𝑓 et un élément 𝑥 de l’espace de départ de 𝑓 .

let rec itere n f x = match n with
| 0 -> x
| _ -> f (itere (n - 1) f x);;

1. Que fait cette fonction?
2. Écrire une version récursive terminale de cette fonction.

Exercice 4

1. Compléter la fonction concat suivante qui concatène deux listes (c’est-à-dire qui impélmente @). Cette version
n’est pas récursive terminale.

let rec concat l1 l2 = match l1 with
|[] -> ...
|t::q -> ... :: (concat);;

2. Compléter la fonction rev_concat suivante telle que rev_concat l1 l2 renvoie le renversement de l1 concaténé
avec l2. Cette fonction est-elle récursive terminale ?

let rec rev_concat l1 l2 = match l1 with
|[] -> ...
|t::q -> rev_concat ... (...::...);;

3. En déduire une fonction récursive terminale rev : ’a list -> ’a list qui renverse une liste. Par exemple
elle transforme [1;2;3;4] en [4;3;2;1]

4. Utiliser les deux fonctions précédentes pour écrire une fonction concat2 : ’a list -> ’a list -> ’a list qui
concatène deux listes et qui soit récursive terminale.

Exercice 5
Dans cet exercice nous allons étudier deux fonctions qui sont prédéfinies en Ocaml :

■ List.map : (’a -> ’b) -> ’a list -> ’b list qui a une fonction 𝑓 : 𝐴 ↦→ 𝐵 et une liste [𝑎0; 𝑎1; ...; 𝑎𝑛−1],
associe la liste [𝑓 (𝑎0); 𝑓 (𝑎1); ...; 𝑓 (𝑎𝑛−1)],

■ List.fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a qui a une fonction 𝑓 : 𝐴×𝐵 ↦→ 𝐴, un élément
𝑎 ∈ 𝐴 et une liste [𝑏0; 𝑏1; ...; 𝑏𝑛−1] d’éléments de 𝐵 associe l’élément 𝑓 (...𝑓 (𝑓 (𝑓 (𝑎, 𝑏0), 𝑏1), 𝑏2)..., 𝑏𝑛−1) de
𝐴.

■ List.fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b qui, à une fonction 𝑓 : 𝐴 × 𝐵 ↦→ 𝐵, une liste
[𝑎0; 𝑎1; ...𝑎𝑛−1] d’éléments de 𝐴 et un élément 𝑏 ∈ 𝐵, associe l’élément 𝑓 (𝑎0, 𝑓 (𝑎1, 𝑓 (𝑎2, ..., 𝑓 (𝑎𝑛−1, 𝑏)))
de 𝐵.

1. Redéfinir la fonction List.length à l’aide de List.fold_left puis à l’aide de List.fold_left. Comment calculer
la somme des éléments d’une liste en utilisant ces deux fonctions? Et pour le produit ?

2. Implémenter ces deux fonctions (si possible de manière récursive terminale).

MP2I - 2025/2026 Informatique - TD n°8 - Récursivité terminale 2/2

3. Déterminer le type et ce que réalisent les fonction suivantes :
let myst1 elt lst = List.fold_right (fun a b -> a :: b) lst [elt];;
let myst2 = List.fold_right (fun a b -> a :: b);;
let myst3 lst = List.fold_left min (List.hd lst) (List.tl lst);;

4. Réaliser la fonction List.map à l’aide de List.fold_right.

